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Today, we talk about Gaussian processes, a nonparametric 

Bayesian method on the function spaces

Outline

 Gaussian process regression

 Gaussian process classification

 Hyper-parameters, covariance functions, and more



Recap. of Gaussian Distribution

Multivariate Gaussian

Marginal & Conditional



A Prediction Task

Goal: learn a function from noisy observed data

 Linear

 Polynomial

 …



Bayesian Regression Methods
Noisy observations

Gaussian likelihood function for linear regression

Gaussian prior (Conjugate)

Inference with Bayes’ rule
 Posterior

 Marginal likelihood
 Prediction



Generalize to Function Space

The linear regression model can be too restricted.

How to rescue?

… by projections (the kernel trick)



Generalize to Function Space

A mapping function

Doing linear regression in the mapped space 

… everything is similar, with X substituted by 



Example 1: fixed basis functions

Given a set of basis functions

 E.g. 1:

 E.g. 2:



Example 2: adaptive basis functions

Neural networks to learn a parameterized mapping function

E.g., a two-layer feedforward neural networks 

[Figure by Neal]



A Non-parametric Approach

A non-parametric approach
 No explicit parameterization of the function
 Put a prior over all possible functions
 Higher probabilities are given to functions that are more likely, 

e.g., of good properties (smoothness, etc.)

 Manage an uncountably infinite number of functions

 Gaussian process provides a sophisticated approach with 
computational tractability



Random Function vs. Random Variable

A function is represented as an infinite vector with a index 

set

For a particular point    , is a random variable



Gaussian Process
A Gaussian process (GP) is a generalization of a multivariate Gaussian distribution to 
infinitely many variables, thus functions

Def:  A stochastic process is Gaussian iff for every finite set of indices x1, ..., xn in the 
index set                                      is a vector-valued Gaussian random variable

A Gaussian distribution is fully specified by the mean vector and covariance matrix

A Gaussian process is fully specified by a mean function and covariance function

 Mean function

 Covariance function



Kolmogorov Consistency

A fundamental theorem guarantees that a suitably 
“consistent” collection of finite-dim distributions will 
define a stochastic process

aka Kolmogorov extension theorem

Kolmogorov Consistency Conditions
 Order over permutation

 Marginalization

 verified with the properties of multivariate Gaussian

Andrey Nikolaevich Kolmogorov

Soviet Russian mathematician

[1903 – 1987]

http://en.wikipedia.org/wiki/Andrey_Kolmogorov
http://en.wikipedia.org/wiki/Andrey_Kolmogorov


Compare to Dirichlet Process

DP is on random probability measure P, i.e., a special type of 
function
 Positive, and sum to one!
 Kolmogorov consistency due to the properties of Dirichlet

distribution

DP: discrete instances (measures) with probability one
 Natural for mixture models 
 DP mixture is a limit case of finite Dirichlet mixture model

GP: continuous instances (real-valued functions)
 Consistency due to the properties of Guassian
 Good for prediction functions, e.g., regression and classification



Bayesian Linear Regression is a GP

Bayesian linear regression with mapping functions

The mean and covariance are

Therefore,



Draw Random Functions from a GP

Example:

 For a finite subset



Draw Samples from Multivariate Gaussian

Task: draw a set of samples from

Directly draw is apparently impossible

A procedure is as follows

 Cholesky decomposition (aka “matrix square root”)

 Generate

 Compute  



Prediction with Noise-free Observations

For noise-free observations, we know the true function value

The joint distribution of training output    and test outputs 



Posterior GP

Samples from the prior and the posterior after observing “+”

 shaded region denotes twice the standard deviation at each input

Why the variance at the training points is zero?



Prediction with Noisy Observations

For noisy observations, we don’t know true function values



The joint distribution of training output    and test outputs 

Is the variance at the training points zero?



Residual Modeling with GP

Explicit Basis Function:

 residual modeling with GP

 an example of semi-parametric model

 if we assume a normal prior

 we have

 Similarly, we can derive the predictive mean and covariance



Outline

Introduction

Gaussian Process Regression

Gaussian Process Classification



Recap. of Probabilistic Classifiers

Naïve Bayes (generative models)
 The prior over classes
 The likelihood with strict conditional independence 

assumption on inputs

 Bayes’ rule is used for posterior inference

Logistic regression (conditional/discriminative 
models)
 Allow arbitrary structures in inputs



Recap. of Probabilistic Classifiers

More on the discriminative methods (binary classification)

 is the response function (the inverse is a link function)

comparison



Recap. of Probabilistic Classifiers

MLE estimation

The objective function is smooth and concave, with unique 

maximum

We can solve it using Newton’s methods, or conjugate 

gradient descent

w goes to infinity for separable case



Bayesian Logistic Regression

Place a prior over w

[Figure credit: Rasmussen & Williams, 2006]



Gaussian Process Classification

Latent function f(x)

Observations are independent given the latent function



Posterior Inference for Classification

Posterior (Non-Gaussian)

Latent value

Predictive distribution



Laplace Approximation Methods

Approximating a hard distribution with a “nicer” one

Laplace approximation is a method using a Gaussian distribution as 
the approximation

What Gaussian distribution?



Laplace Approximation Methods

Approximate the integrals of the form

 assume         has global maximum at 

 then

 since              growing exponentially with M, it’s enough to 

focus on         at     

As M increases, integral is well-approximated by a Gaussian



Laplace Approximation Methods

An example:

 a global maximum is



Laplace Approximation Methods

Deviations by Taylor series expansion

 assume that the high-order terms are negligible

 since           is a local maxima, 

Then, take the first three terms of the Taylor series at



Application: approximate a hard dist.

Consider single variable z with distribution

 where the normalization constant is unknown

 f(z) could be a scaled version of p(z)

Laplace approximation can be applied to find a Gaussian 

approximation centered on the mode of p(z)



Application: approximate a hard dist.

Doing Taylor expansion in the logarithm space

 is the mode. We have

 Then, the Taylor series on      is

 Taking exponential, we have



Application: generalize to multivariate

Task: approximate                      defined over M-dim space 

Find a stationary point     , where

Do Taylor series expansion in log-space at

 where  A is the               Hessian matrix

Take exponential and normalize



Steps in Applying Laplace Approximation

Find the mode

 Run a numerical optimization algorithm

 Multimodal distributions lead to different Laplace 

approximations depending on the mode considered

Evaluate the Hessian matrix A at that mode



Approximate Gaussian Process
Using a Gaussian to approximate the posterior

Then, the latent function distribution

Laplace method to a nice Gaussian



Laplace Approximation for GP

Computing the mode and Hessian matrix

The true posterior

 normalization constant 

Find the MAP estimate

 Take the derivative



Laplace Approximation for GP

The derivatives of the log posterior are

 W is diagonal since data points are independent

Finding the mode

 Existence of maximum

 For logistic, we have

The Hessian is negative definite
The objective is concave and 

has unique maxima

How about probit regression?

(homework)



Laplace Approximation for GP

Logistic regression likelihood

 How about negative examples?

Well-explained Region



Laplace Approximation for GP

Probit regression likelihood

 How about negative examples?

Well-explained Region



Laplace Approximation for GP

The derivatives of the log posterior are

 W is diagonal since data points are independent

Finding the mode

 Existence of maximum

 At the maximum, we have

 No-closed form solution, numerical methods are needed



Laplace Approximation for GP

The derivatives of the log posterior are

 W is diagonal since data points are independent

Finding the mode

 No-closed form solution, numerical methods are needed

The Gaussian approximation



Laplace Approximation for GP

Laplace approximation

Predictions as GP predictive mean

 Positive examples have positive coefficients for their kernels

 Negative examples have negative coefficients for their kernels

 Well-explained points don’t contribute strongly to predictions

Non-support vectors



Laplace Approximation for GP

Laplace approximation

Predictions as GP predictive mean

 Then, the response variable is predicted as (MAP prediction)

 Alternative average prediction



Weakness of Laplace Approximation

Directly only applicable to real-valued variables

 Based on Gaussian distribution

May be applicable to transformed variable

 If                   , then consider Laplace approximation of

Based purely on a specific value of the variable

 Expansion on local maxima



GPs for Multi-class Classification

Latent functions for n training points and for C classes

Using multiple independent GPs, one for each category

Using softmax function to get the class probability

Notation:



Laplace Approximation for Multi-class GP

The log of un-normalized posterior is

We have

Then, the mode is

 Newton method can be applied with the above Hessian

Uncorrelated processes

between classes:



Laplace Approximation for Multi-class GP

Predictions with the Gaussian approximation

 The predictive mean for class c is

 which is Gaussian as both terms in the product are Gaussian

 the mean and co-variance are



Covariance Functions

The only requirement for covariance matrix is the positive 

semidefinite

Many covariance functions, hyper-parameters make influence

S: stationary; ND: non-degenerate. Degenerate covariance functions have finite rank



Covariance Functions

Squared Exponential Kernel

 Infinitely differentiable
 Equivalent to regression using infinitely many Gaussian shaped basis functions 

placed everywhere, not just training points!

Gaussian-shaped basis functions

 For the finite case, let the prior                               , we have a GP with covariance 
function

 For the infinite limit, we can show

# basis functions

per unit interval.



Covariance Functions

Squared Exponential Kernel

 Proof: (a set of uniformly distributed basis functions)

 Let the integral interval go to infinity, we get



Using finitely many basis functions can be 

dangerous!

Missed components

Not full rank



Adaptation of Hyperparameters

Characteristic length scale parameter

 Roughly measures how far we need to go in order to make the 

data points un-related (or the function value change significantly)

 Larger l gives smoother functions (i.e., simpler functions)



Adaptation of Hyperparameters

Squared exponential covariance function

 Hyper-parameters

 Possible choices of M



Marginal Likelihood for Model Selection

A Bayesian approach to model selection

 Let       denote a family of models. Each       is characterized by 

some parameters

 The marginal likelihood (evidence) is

 An automatic trade-off between data fit and model complexity 

(see next slide …)

likelihood prior



Marginal Likelihood for Model Selection

Simple models account for a limited range of data sets; complex models 
account for a broad range of data sets.

For a particular data set y, the margin likelihood prefers a model of 
intermediate complexity over too simple or too complex ones

p(
y|

X
,M

i)



Marginal Likelihood for GP

Marginal likelihood can be used to estimate the hyper-parameters 
for GP

For GP regression, we have

data fit model complexity



Marginal Likelihood for GP

Marginal likelihood can be used to estimate the hyper-parameters 
for GP

For GP regression, we have

Then, we can do gradient descent to solve

For GP classification, we need Laplace approximation to compute 
the marginal likelihood.



Other Model Selection Methods

When the number of parameters is small, we can do

 K-fold cross-validation (CV)

 Leave-one-out cross-validation (LOO-CV)

Different selection methods usually lead to different results

Marginal likelihood estimation LOO-CV



Hyperparameters of Covariance Function

Squared Exponential

 Hyperparameters: maximum allowable covariance, and Length parameter

– The mean posterior predictive functions for three different length-scales

– Green one learned by maximum marginal likelihood

– Too short one can almost exactly fits the data!



Other Inference Methods

Markov Chain Monte Carlo methods

Expectation Propagation

Variational Approximation



Other Issues

Multiple outputs

Noise models with correlations

Non-Guassian likelihood

Mixture of GPs

Student’s t process

Latent variable models

…
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Source Code

GPStuff

http://becs.aalto.fi/en/research/bayes/gpstuff/

http://becs.aalto.fi/en/research/bayes/gpstuff/

