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# 'Today, we talk about Gaussian processes, a nonparametric

Bayesian method on the function spaces

# Outline
o Gaussian process regression
o Gaussian process classification

o Hyper-parameters, covariance functions, and more




Recap. of Gaussian Distribution

# Multivariate Gaussian A

p(x|p1, 52) = (2m)P/2|5) 12 exp(—

& Marginal & Conditional




A Prediction Task

. f: X =)

Goal: learn a function from noisy observed data

o Linear Flinear = {f : f =wr +c¢, w,CE R}

2 Polynomial fpo[ynomial — {f = Zwkxka wg € R}
. ke

Q o




Bayesian Regression Methods
# Noisy observations
y = f(x) + ¢, where e ~ N(0,07)

# Gaussian likelihood function for linear regression f(x;) = WTZEZ-

p(y|x, w) Hp yilzs, w) = N(X 'w, o0 1)

# Gaussian prior (Conjugate)
W~ N (07 Zp)

# Inference with Bayes’ rule

i 1
o Posterior p(W|X,y) :N(g_z

A Xy, A™Y), where A =0, 2XX" + Z;l

Q Marginal likelihood
o Prediction p(y|X) :/p(y|X, w)p(w)dw

1+ _
p(felxe, X, y) =/p(f*lx*,W)p(WlX,y)dWZN(O—QX*TA 'Xy.x, A7'x,)

n




Generalize to Function Space

# The linear regression model can be too restricted.

# How to rescue?

# ... by projections (the kernel trick)




Generalize to Function Space

# A mapping function
o: X > RN

# Doing linear regression in the mapped space

f(x) =o(x)'w
& ... everything is similar, with X substituted by &(X)

F00x)TA By, o(x.) A B(x.))

o2
O-n

p(fulxs, X, y) :N(

O(X) = [o(x1) - p(xp)] A=0 20" + 5,70




Example 1: fixed basis functions

# Given a set of basis functions {¢s(x)}L,

3(x) = [p1(x) - Pr(x)] "

m) Eg 1:

onl)  exp (- 1ol

272
0 E.g. 2:




Example 2: adaptive basis functions

# Neural networks to learn a parameterized mapping function

# E.g., a two- layer feedforward neural networks

—tanh(thz xz+wh0> ________ o

Z w(2) + w(()z) )

Output Units

/ Q (O (O Hidden Units
NNy

O O O O O O Input Units

[Figure by Nedy




A Non-parametric Approach

# A non-parametric approach
2 No explicit parameterization of the function
a Put a prior over all possible functions

o Higher probabilities are given to functions that are more likely,
e.g., of good properties (smoothness, etc.)

o Manage an uncountably infinite number of functions

o Gaussian process provides a sophisticated approach with
computational tractability




Random Function vs. Random Variable

# A tunction is represented as an infinite vector with a index

f(x) \/
]

—‘4—T—0—H—0—0—0—0—0—0—>CE

# For a particular point z;, f(z;) is a random variable

fz)q ? %\
7 .

set




Gaussian Process

# A Gaussian process (GP) is a generalization of a multivariate Gaussian distribution to
infinitely many variables, thus functions

# Def: A stochastic process is Gaussian iff for every finite set of indices x,, ..., x, in the
index set ( f (X1)7 e f (X n)) is a vector-valued Gaussian random variable

# A Gaussian distribution is fully specified by the mean vector and covariance matrix
T
fz(fla"'afn) NN(I%Z)

# A Gaussian process is fully specified by a mean function and covariance function

f(x) ~ GP(m(x), x(x,x"))
m(x) = E[f(x)]

o Mean function

o Covariance function

r(x,x') = E[(f(x) —m(x))(f(x") = m(x))]




Kolmogorov Consistency

# A fundamental theorem guarantees that a suitably
“consistent” collection of finite-dim distributions will
define a stochastic process

# aka Kolmogorov extension theorem

& Kolmogorov Consistency Conditions

o Order over permutation

o Marginalization il
Andrey Nikolaevich Kolmogorov
Soviet Russian mathematician

[1903 — 1987]

o verified with the properties of multivariate Gaussian



http://en.wikipedia.org/wiki/Andrey_Kolmogorov
http://en.wikipedia.org/wiki/Andrey_Kolmogorov

Compare to Dirichlet Process

# DP is on random probability measure P, i.e., a special type of
function
o Positive, and sum to one!

0 Kolmogorov consistency due to the properties of Dirichlet
distribution

# DP: discrete instances (measures) with probability one
o Natural for mixture models
o DP mixture is a limit case of finite Dirichlet mixture model

# GP: continuous instances (real-valued functions)
o Consistency due to the properties of Guassian
2 Good for prediction functions, e.g., regression and classification




Bayesian Linear Regression is a GP

4 Bayesian linear regression with mapping functions

f(x) =¢(x) ' w w ~ N(0,%,)

4 The mean and covariance are
E[f(x)] = ¢(x) "E[w] =0
r(x, x') = E[f(x) f(x)] = () "E[ww ' |¢(x) = o(x)Z,0(x)
& Therefore,
F(x) ~ GP(0,6(x) ' £pp(x))




Draw Random Functions from a GP

# Example:
p(f(x) ~ GP (m(x) = 0,(x,2") = exp(— (x — 2')?))
o For a finite subset

(f(z1),---, f(xn)) ~N(0,%), where &;; = r(x;, x;)
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Draw Samples from Multivariate Gaussian

# Task: draw a set of samples from
N (x|, %)
& Directly draw is apparently impossible

# A procedure is as follows
a Cholesky decomposition (aka “matrix square root”)
Y»=LL"
L is a lower triangular matrix.
o Generate y ~ N(0,1)
o Compute X = p+ Ly

) EX =p cov(x) =El(x —p)(x— )] = LE[yy ']L" =%




Prediction with Noise-free Observations

# For noise-free observations, we know the true function value

{(xi, fi) Fieq

# The joint distribution of training output f and test outputs f,

MRS

£, X., X, f ~ N( K(X., X)K(X,X)"'f,

K(X.,X.) — K(X., X)K(X,X) "K(X, X*))

MR ERT)

x|y ~ N(pe + CB™(y — py), A= CB~'CT)




Posterior GP

# Samples from the prior and the posterior after observing “+”

2

—

output, f(x)
(=)

input, x

(a), prior

output, f(x)

0 5
input, x

(b), posterior

o shaded region denotes twice the standard deviation at each input

& Why the variance at the training points is zero?




Prediction with Noisy Observations

# For noisy observations, we don’t know true function values

{(xi,9:) 0y yi=f(xi)+e €~ N(0,02)

> 4 cov(Yp, Yq) = k(Xp, Xq) + 0727,5pq or cov(y)=K(X,X)+ Ol

# The joint distribution of training output y and test outputs f.

e KRS R )

K(X., X.) — K(X., X)[K(X, X) + 821 'K(X, X*))

# Is the variance at the training points zero?




Residual Modeling with GP

# Explicit Basis Function:
9(x) = £(x) + h(x)TA, where f(x) ~ GP(0, r(x,x))

o residual modeling with GP
0 an example of semi-parametric model

o if we assume a normal prior

B~ N(b,B)

o we have

g(x) ~ GP (h(x)Tb, k(x, %) + h(x)TBh(x'))

a Similarly, we can derive the predictive mean and covariance




Outline

&
&

# Gaussian Process Classification




Recap. of Probabilistic Classifiers

4 Naive Bayes (generative models)
a The prior over classes p(y)

o The likelihood with strict conditional independence
assumption on inputs

d
p(ar, .. zaly) = | [ plw:ly) T T T
i=1
0 Bayes’ rule is used for posterior inference

p(y|x) o< p(y)p(z1,. .., 2aly)

# Logistic regression (conditional / discriminative Y
models)

o Allow arbitrary structures in inputs

B exp{w ' f(x,y)}
Plylx) = > expiw T f(x, )} 1 X2 Lg




Recap. of Probabilistic Classifiers

# More on the discriminative methods (binary classification)

ply = +1|x,w) = o(w ' x)
a 0 is the response function (the inverse is a link function)

1
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Recap. of Probabilistic Classifiers

# MLE estimation

max logp(y|X, w)

# The objective function is smooth and concave, with unique

maximum

# We can solve it using Newton’s methods, or conjugate

gradient descent

# W goes to infinity for separable case




Bayesian Logistic Regression

# Place a prior over w

p(w) =N(0,%,)
2- | T
i i
' | o
T/ W I o
| o
PN s
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w [Figure credit: Rasmussen & Williams, 2006y




Gaussian Process Classification

P .
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class probability, m{x)

# Latent function f(x) ’
f(2) ~ GP(m(x), K(z,2") ' /
m(x) = p(y = +1]z) = o(f(x))
# Observations are independent given the latent function /

n

p(ylf) = | [ p(uil f2)

1=1




Posterior Inference for Classification

# Posterior (Non-Gaussian)

# Latent value (¢ x,y) =

# Predictive distribution

P(fo X,y %) = / P(f2]X, %o, E)p(E]X, y)dE

Plys = +11X, 3, %) = / o (fIpUfel X, v, %0 ) df




Laplace Approximation Methods

# Approximating a hard distribution with a “nicer” one

& Laplace approximation is a method using a Gaussian distribution as
the approximation

# What Gaussian distribution?




Laplace Approximation Methods

# Approximate the integrals of the form

b
/ eM () 1.

a assume f(z) has global maximum at zg
a then f(xg) > f(x) for any = # xg
a since ¢M/(*) growing exponentially with 44, it’s enough to

focus on f(z) at o

# As M increases, integral is well-approximated by a Gaussian

b
2T
/ae dx \/ MV ) T

where V” f(z) denotes VV f(z)




Laplace Approximation Methods
# An example:

a5
20F H

15}




Laplace Approximation Methods

# Deviations by Taylor series expansion

f(x) = f(@o) + Vf(2)|a=ao (z — o) + %sz(x)lmzxo(fﬂ —0)” +h.ot...

o assume that the high-order terms are negligible
a since f(z) is a local maxima, V f(z)|,—z, = 0

# Then, take the first three terms of the Taylor series at o
1
f(@) = f(wo) + 5V f(@) o= (¥ — 20)°

b b
/ M/ (@) qgp — M7 (o) / exp (%MVQf(ach_mo(m — xo)z)dw

1
C MV2f()]|a=ayg

b b
L / M@ gy = M7 (@o) / exp ( — 2%(:1: — a:o)z)dx = M/ (@0\/or 52
a a o

Let 02 =

/




Application: approximate a hard dist.

# Consider single variable z with distribution

1
2) = = f(z
p(2) A (2)
o where the normalization constant is unknown

a f(z) could be a scaled version of p(z)

# Laplace approximation can be applied to find a Gaussian

approximation centered on the mode of p(z)




Application: approximate a hard dist.

# Doing Taylor expansion in the logarithm space

p(e) = 5 () = 5O

o 20 is the mode. We have

Vp(2)z =0  VF(2):=0 VInf(2)]z =0

5 Then, the Taylor series on 20 is
In £(2) = In f(z0) — %A(z _20)?  where A = —V%In £(2)]ong
2 Taking exponential, we have £(2) % f(z0) exp ( — 5 A(z — z0)° )
22 [ feden [ fGyen (- 5AG - 20)°)dz

= f(20) 2%

-




Application: generalize to multivariate

# Task: approximate p(z) = L f(z) detined over M-dim space

~Z
# Find a stationary point 2o, where Vf(z)|z, =0
# Do Taylor series expansion n log—space at Zo

In £(2) = In f(z0) — %(z — 20)T A(z — 7o)

o where A is the M x M Hessian matrix
A= _VQJC(ZNZO

# Take exponential and normalize

(z — zo)TA(z — zo))

f(z) = flzo)exp (- 3

q(z) = N(zo, A_l)




Steps Iin Applying Laplace Approximation

# Find the mode
o Run a numerical optimization algorithm

o Multimodal distributions lead to different Laplace

approximations depending on the mode considered

# Evaluate the Hessian matrix A at that mode




Approximate Gaussian Process

4 Using a Gaussian to approximate the posterior
p(f1X.y) = ¢(f[X,y) = N(m, A
& Then, the latent function distribution
q(f| X, y,x.) = N(fi|ps,0?), where
e =k! K7'm, 62 = k(x,,x,) — k] (K~ = K71A Kk,

& Laplace method to a nice Gaussian

g(F|X,y) = N(f|f, Al) 5 exp ( - %(f CBTAf - i—‘))

where f = argmtgxxp(f]X,y) and A= —-VVlogp(f|X,y)|e_;




Laplace Approximation for GP

& Computing the mode and Hessian matrix

# The true posterior YR (EL)
eix vy = PP

o normalization constant
# Find the MAP estimate
Y(f) = logp(ylf) + log p(f| X)

= logp(ylf) — of K"~ o

5 log | K| — glogQ'}T

o Take the derivative
Vip(f) = Viogp(ylf) — K 'f

V2(f) = Viogp(ylf) — K~ ' = -W - K!




Laplace Approximation for GP

# The derivatives of the log posterior are
Vi(f) = Viegp(y|f) — K~ 'f

VA(f) = Viogp(ylf) — K" = -W - K~
o Wis diagonal since data points are independent
# Finding the mode
o Existence cj maximum

o For 10gistic, we have How about probit regression?

(homework)

Vi logp(yilfi) = ti —m
Wi = V3, logp(yil fi) = —mi(1 — ;)
where T — p(yi = 1|f@) and ti = (yz + 1)/2

The Hessian is negative definite ‘ The objective is concave and

has unique maxima




Laplace Approximation for GP

# Logistic regression likelihood

E_ 1 e ________________________________________________

> e

Q : ———

k]

'8 _1 _______________________________________________________________________________________________

O

C

E _2_ ______________________________________________ ____________________________ ___________________

2 ; — log likelihood

% I ---- 1st derivative
----- - 2nd derivative

- 2
latent times target, zi=yifi

o How about negative exarnples?

Well—explained Region
Vi, logp(y:|fi) = 0




Laplace Approximation for GP
# Probit regression likelihood

E: 2 ................ ﬁw‘"*-..,__‘”h ____________________
% 0_ ______________________ ‘ HHH“‘ ______ . (
5) ------- -------- > ' 0 ~— Well-explained Region
‘§ _2_ __________________________ ____________________________ ___________________ J Vf%- 1ng(y@|fz) ~ 0
e : : :
E _4_ _______________________________________________ ____________________________ ___________________
o g — log likelihood
= _6 """"""""""""" ---- 1st derivative
Y - 2nd derivative

- 2
latent times target, zi=yifi

o How about negative exarnples?




Laplace Approximation for GP

# The derivatives of the log posterior are
Vi (f) = Viegp(ylf) — K~ 'f
VA(f) = Viogp(ylf) — K" = -W - K~
o Wis diagonal since data points are independent

& Finding the mode
o Existence cyf maximum

o At the maximum, we have V) (f) =0

f = KVlogp(ylf)

2 No-closed form solution, numerical methods are needed
£ = — (V) 'V = 4+ (W + K1) (Viegp(ylf) — K 'f)

= (W + K Y Y (WF' + Viegp(yl|f))




Laplace Approximation for GP

# The derivatives of the log posterior are
Vi (f) = Viegp(ylf) — K~ 'f
VA(f) = Viogp(ylf) — K" = -W - K~
o Wis diagonal since data points are independent

# Finding the mode
a No-closed form solution, numerical methods are needed
£ = (W+ K1) (WE' 4 Viogp(ylf))

# The Gaussian approximation

a(f1X,y) =N (£, (K +w) ")




Laplace Approximation for GP

# Laplace approximation
a(f1X,y) = N (£ (K + W)~

# Predictions as GP predictive mean
Eqlf|X,y,x.] =k(x.)  K~'f =k(x.)" Vlogp(yl|f)

a Positive examples have positive coefficients for their kernels
Vilogp(y: =1|fi) =1—p(y: = 1]fi) >0

o Negative examples have negative coetticients for their kernels
Vi logp(y: = —1|fi) = —p(y: = 1fi) <O

o Well—explained points don’t contribute strongly to predictions

Vi, logp(yi|fi) = 0

Non—support vectors




Laplace Approximation for GP

# Laplace approximation
a(f1X,y) = N (£ (K + W)~

# Predictions as GP predictive mean
Eqlf|X,y,x.] =k(x.)  K~'f =k(x.)" Vlogp(yl|f)
a Then, the response variable is predicted as (MAP prediction)

@* - J(]EQ[f*|Xa Y, X*])

o Alternative average prediction

g ~ [ o (f)a(f+| X, y, %) df




Weakness of Laplace Approximation

& Directly only applicable to real-valued variables
o Based on Gaussian distribution
4 May be applicable to transformed variable

a If 0 <7 < oo, then consider Laplace approximation of Inr

# Based purely on a specific value of the variable

a Expansion on local maxima




GPs for Multi-class Classification

# Latent functions for n training points and for C classes
f=(fl, o fa Sl fae e U )T
# Using multiple independent GPs, one for each category
VeeC: fo(x) ~GP(m"(x),r(x,x))

# Using softmax function to get the class probability

exp( f{
pclE) = <SPUE
Zc’ eXp(fi )
Notation: Y = (y%,...,y}z,y%,--—;yiw--;y?a---ayg)—r

Vi : only one of y; is 1. all other C' — 1 entries are 0.




Laplace Approximation for Multi-class GP

# The log of un-normalized posterior is

1 Cn

—y ' f— Zlog Zexpf,,, —%fTK_lf—ﬁlog]K|—710g27r

# We have Vip(f) = —K 'f +y —m, where { = p(y5|f;)
V2(f) = =K' — W, where W = diag(m) — IIII"
# Then, the mode is
f=K(y—#)
o Newton method can be applied with the above Hessian

Uncorrelated processes T Ky 0 0 0 - diag(ﬂ'l) -

between classes: 0 K> 0 0 diag(wQ)
K = . . . IT =

\_ 0 0 0 K¢ | | diag(7©) |




Laplace Approximation for Multi-class GP

# Predictions with the Gaussian approximation
f=K(y—7)
gf| X, y) =N{E,W+K )

o The predictive mean for class c is
®1X.yx) = [ B0 X x E)a(E]X, y)df

which is Gaussian as both terms in the product are Gaussian

the mean and co-variance are
Eqlf (%)X, y, %] = ke(x) T K, £ = ke(x:) ' (y© — 7°)
covy(f.| X, y,x.) = diag(k(x«,%x.)) — Q. (K + W™ H)7'Q.

[ ki (x4) 0 0 0 ]
0 ko(xs) O 0
Q




Covarilance Functions

# The only requirement for covariance matrix is the positive

semidefinite

# Many covariance functions, hyper-parameters make influence

covarlance function | expression S ND
constant o} Vv
linear Ele o2z qx),

polynomial (x - x' + od)P

squared exponential | exp(— _}’—;r] v oV
Matérn ey () K, () |V Y
exponential exp(—7%) v oV
~-exponential exp ( — (’—é}’*) v oV
rational quadratic (1+ %}_“ v
neural network sin™" ( 28 B% ) Vv

V(12X TER)(1+ 2% TER!)

S: stationary; ND: non-degenerate. Degenerate covariance functions have finite rank




-

Covarilance Functions

X Squared Exponential Kernel

—(xp — 2¢)

k(xp,x,) = 0?» exp {
o Infinitely differentiable

o Equivalent to regression using infinitely many Gaussian shaped basis functions
placed everywhere, not just training points!

& Gaussian—shaped basis functions
(x — )
212 )

Ve € [Cminacmaw] . (Zbc(iﬁ') — eXp(_

o For the finite case, let the prior w ~ N (O 02 i ) we have a GP with covariance
function

fﬁ)(iL'p, ﬁfq) = C’g Z Cbc(xp)(/bc(xCI)

o For the infinite limit, we can show

2 N
X—;{;Cbc(%ﬂ)qbc(xQ) 5 \/_ZU eXp(

(zp — mq)2 Sl A VISR & N # basis functions
(\/_l) Cmax — Cmin Per unitinterval.

/




Covarilance Functions
N

Cmax — Cmin

@ Squared Exponential Kernel AH =

2

Og = N—oo 2 (zp — z4)
AH ; Ge(xp)Pe(1g) — \/ﬂ% exp ( - W)

a Proof: (a set of uniformly distributed basis functions)

02
Ve - [Cminacma:r] . ch(x) — eXp(_ (x 2126) )
2 N Cmax
A}i_{noo AO-ZT ;Cbc(fﬂp)‘.bc(mq) = U; fcmin Pe(xp)Pe(xq)de

Let the integral interval go to infinity, we get

K(xp,xq) = 0'12) Lz exp ( — M) exp ( ~ (zq — C)Q)dc

212 212




Using finitely many basis functions can be
dangerous!

# Missed components
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# Not full rank
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Adaptation of Hyperparameters

# Characteristic length scale parameter |

2 {_(xp — z4)*

k(ap,xq) = 0 exp 972 } +0,0p, 4

0 Roughly measures how far we need to go in order to make the

data points un-related (or the function value change significantly)
o Larger I gives smoother functions (i.e., simpler functions)

[=0.3 lzll | [=3

_|_
+ 5

++




outputy

Adaptation of Hyperparameters

& Squared exponential covariance function
’i(xpv Xq)

o Hyper-parameters ¢ = (M, oF,00)

o Possible choices of M

1
= O'? exp ( — §(Xp — Xq)TM(Xp — Xq)) + O-?ldp’q

M; = ¢ %I, M, =diag(¥)"?, M;=AA" + diag(¥) >

M =1T g Ty\—2
! My = diag((1,3) ) Ms:A=(1,-1)", £=(6,6)"
2
o 1
,-:"‘é’:’rv > -
g o 2
3 = ;
-1 °
‘ i -2 e
. -""Q"i"'::"' P 2 ; 7 5 ‘»
0 b o 0 0 » - : '0 0 | .~0
_2 ) _2 . =2 -2 . -2 -2
P2 input x1 input x2 input x1




Marginal Likelihood for Model Selection

# A Bayesian approach to model selection

o Let M: denote a family of models. Each M is characterized by

some parameters 0

o The marginal likelihood (evidence) is

p(y|X, M;) = / p(y|X, 0, M)p(6]M;)do

/

likelihood prior

o An automatic trade-off between data fit and model complexity

(see next slide ...)




Marginal Likelihood for Model Selection

Pl e simple
- intermediate
--=- complex

marginal likelihood, p(y|X,M,)

y
all possible data sets

4 Simple models account for a limited range of data sets; complex models
account for a broad range of data sets.

# For a particular data set y, the margin likelihood prefers a model of
intermediate complexity over too simple or too complex ones




Marginal Likelihood for GP

& Marginal likelihood can be used to estimate the hyper—parameters
for GP

# For GP regression, we have

1 B 1 n
logp(y|X,0) = -y ' K, 'y — 5 log | K| — 7 log 27
/f \
data fit model complexity

where K, = Ky + o1 for noisy targets y.

40
20r

U______,

|
]
(=]
T

|
P
=]
T

log probability

|
=3}
(=]
T

| == minus complexity penalty
--- data fit
— marginal likelihood

|
[5=]
(=]

-100

107
characteristic lengthscale




Marginal Likelihood for GP

& Marginal likelihood can be used to estimate the hyper—parameters
for GP

# For GP regression, we have

1 B 1 n
logp(y|X,0) = -y ' K, 'y — 5 log | K| — 7 log 27

where K, = K; + o1 for noisy targets y.
y f

# Then, we can do gradient descent to solve

0 = arg max log p(y|X,0)

# For GP classification, we need Laplace approximation to compute

the marginal likelihood.




Other Model Selection Methods

# When the number of parameters is small, we can do

o K-tfold cross-validation (CV)
o Leave-one-out cross-validation (LOO-CV)

& Different selection methods usually lead to different results

-1 05 0 05 1 -1 05 0 05 1
input, x input, x

Marginal likelihood estimation LOO-CV




Hyperparameters of Covariance Function

# Squared Exponential

k(x,2") = 0? exp {

o Hyperparameters: maximum allowable covariance, and Length parameter

1.5 . .
-+ observations
— too short
L —— good length scale |_|
1 /+ﬁk\\ —— too long
A N
4 AN

| B e N +
+-. __.—--"'___--_-_ / T -""-h-.__q__ r/ — \ )
P T

=¥
-0.5 | | | | | | | | |
-10 -8 -6 -4 -2 0 2 4 6 8 10

— The mean posterior predictive functions for three different length—scales

— Green one learned by maximum marginal likelihood

— Too short one can almost exac‘dy fits the data!
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Other Inference Methods

# Markov Chain Monte Carlo methods
& Expectation Propagation

# Variational Approximation




Other Issues
4 Multiple outputs

# Noise models with correlations
# Non-Guassian likelihood

# Mixture of GPs

# Student’s t process

# Latent variable models

@® ...
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Source Code

@ GPStuft
# http:/ /becs.aalto.fi/en/research/bayes/gpstuff/



http://becs.aalto.fi/en/research/bayes/gpstuff/

